


Voltage Transducer CV 3-200/SP5

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

\mathbf{V}_{PN}	Primary nominal r.m.s. voltage	140	V
V _P	Primary voltage, measuring range	0 ± 200	V
V s	Secondary analog voltage @ V _{P max}	10	V
K _N	Conversion ratio	200 V/10 V	
R,	Load resistance	≥ 1	$k\Omega$
C,	Capacitive loading	≤ 5	nF
V _	Supply voltage (± 10 %)	± 15 24	V
I _c	Current consumption	$32 + V_{s}/R_{1}$	mA
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	2.5	kV
V e	R.m.s. voltage for partial discharge extinction		
Ü	@ 10 pC	2	kV

Accuracy - Dynamic performance data

			Max	
$\mathbf{X}_{_{\mathrm{G}}}$	Overall accuracy @ V _{P max}	$T_A = 25^{\circ}C$	± 0.2	%
		- 25°C + 75°C	± 0.5	%
$V_{\rm o}$	Offset voltage @ $\mathbf{V}_{P} = 0$	$T_A = 25^{\circ}$	± 5	mV
		- 25°C + 75°C	± 10	mV
t,	Response time $^{1)}$ @ 90 % of \mathbf{V}_{PN}		0.4	μs
dv/dt	dv/dt accurately followed		160	V/µs
f	Frequency bandwidth (- 3 dB) @ \	/ _{PN}	DC 700	kHz

General data

\mathbf{T}_{A}	Ambient operating temperature	- 25 + 75	°C
$T_{\rm s}$	Ambient storage temperature	- 40 + 85	°C
P	Total primary power loss	3.1	W
$\mathbf{R}_{_{1}}$	Primary resistance	6.4	$k\Omega$
m	Mass	0.65	kg
	Standards	EN 50155	

Features

- Closed loop (compensated) voltage transducer
- Isolated plastic case recognized according to UL 94-V0
- · Patent pending.

Special features

- $V_{c} = \pm 15 ... 24 (\pm 10 \%) V$
- $V_d = 2.5 \text{ kV}$ $T_A = -25^{\circ}\text{C} ... + 75^{\circ}\text{C}$
- VRT Burn-in
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- · Low thermal drift
- Low response time
- High bandwidth
- High immunity to external interference
- Low disturbance in common mode.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Note: $^{1)}$ With a dv/dt of 200 V/ μ s.

070404/6

Dimensions CV 3-200/SP5 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance ± 0.3 mm
 Transducer fastening 3 holes Ø 5.5 mm
 M5 steel screens
 Fastening torque max 3.8 Nm or 2.8 Lb. -Ft.
 Connection of primary and secondary
 Fastening torque max 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \bullet $\mathbf{V}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- CEM tested with a shielded secondary cable.
 Shield connected to 0 V at both ends, or disconnected.